Unwarping GISAXS data


Liu, J.; Yager, K.G. "Unwarping GISAXS data" IUCrJ 2018, 5 737–752.
doi: 10.1107/S2052252518012058


We demonstrate a computational method for undistorting GISAXS data, thereby removing the complications associated with refraction and multiple scattering.


Grazing-incidence small-angle X-ray scattering (GISAXS) is a powerful technique for measuring the nanostructure of coatings and thin films. However, GISAXS data are plagued by distortions that complicate data analysis. The detector image is a warped representation of reciprocal space because of refraction, and overlapping scattering patterns appear because of reflection. A method is presented to unwarp GISAXS data, recovering an estimate of the true undistorted scattering pattern. The method consists of first generating a guess for the structure of the reciprocal-space scattering by solving for a mutually consistent prediction from the transmission and reflection sub-components. This initial guess is then iteratively refined by fitting experimental GISAXS images at multiple incident angles, using the distorted-wave Born approximation (DWBA) to convert between reciprocal space and detector space. This method converges to a high-quality reconstruction for the undistorted scattering, as validated by comparing with grazing-transmission scattering data. This new method for unwarping GISAXS images will broaden the applicability of grazing-incidence techniques, allowing experimenters to inspect undistorted visualizations of their data and allowing a broader range of analysis methods to be applied to GI data.